
3 Projective embedding of Riemann surfaces

3.1 Projective space

The n-dimensional complex projective space is de�ned by Pn(C) := (Cn+1\{0})/ ∼ with the equiv-
alence relation z ∼ w in Cn+1\{0} :⇔ w = λz for some λ ∈ C×. The projective space is equipped
with quotient topology making it second countable and Hausdor�. There is so-called homogeneous
coordinate given by the projection π : Cn+1\{0} → Pn, (z0, z1, . . . , zn) = z 7→ [z] = [z0 : z1 : · · · : zn].
In terms of homogeneous coordinate, one can �nd a standard chart determined by homeomorphisms
ϕi : Ui := {[z0 : · · · zn] | zi 6= 0} → Cn, [z0 : · · · : zn] 7→ ( z0

zi
, . . . , zi−1

zi
, zi+1

zi
, . . . , zn

zi
) for all i = 0, . . . , n.

The transition functions of charts are given by

gij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj)

z = (z1, . . . , zn) 7→ gij(z) =

{
z/z2

i+1 i < j
z/z2

i i > j

which are holomorphic maps on open subsets of Cn. This demonstrates that the complex projective
space is indeed a n-dimensional complex manifold.

From algebraic geometry point of view, Pn(C) is a variety equipped with Zariski topology. Let A be a
generic ring, A[z0, . . . , zn] is a polynomial ring which is naturally a graded ring, its projective spectrum
of the polynomial ring Pn

A := ProjA[z0, . . . , zn] turns out to be a scheme. When A = k (e.g. C for
our case) is a algebraically closed �eld, the subspace of closed point in scheme Pn

k is homeomorphic
to variety Pn(k). In general, over algebraically closed �eld k, there is a fully faithful functor from the
category of varieties to the category of schemes and for any variety its topological space (w.r.t.Zariski
topology) is homeomorphic to the set of closed point in the space of the corresponding scheme under
the functor, its sheaf of regular functions is obtained by restricting the structure sheaf of the scheme
via this homeomorphism. Cf. [Hart] Ch.II �2 for full details.

3.2 Line bundles on projective spaces

Recall twisted sheaf on P1.

De�nition 3.2.1. The twisted sheaf O(1) on Pn is the sheaf of holomorphic sections of the line
bundle L→ X de�ned w.r.t. standard charts by the cocycle g = (gij := zj/zi) ∈ Z1(U ,O×).

The sections of O(1) are linear polynomials, i.e. O(1)(Pn) = H0(Pn,O(1)) ⊂ C[z0, . . . , zn].

3.3 Projective map

An invertible sheaf L on a Riemann surface X is said to be globally generated (generated by global
sections) if it has no base point (a point x ∈ X s.t. for all sections s ∈ L (X) the germ at x satis�es
sx ∈ mxL i.e. s(x) = 0), namely for any point x ∈ X there exits a section s ∈ L (X) s.t. the germ
sx ∈ Lx generates the stalk Lx as a OX,x-module. An invertible sheaf L on X is globally generated
i�. for any x ∈ X the canonical map H0(X,L ) = L (X)→ Lx , s 7→ sx is surjective.

Consider a globally generated invertible sheaf L on a compact Riemann surface X, By choosing a
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basis (si)i=0,...n ∈ H0(X,L ) (it is a �nite dimensional topological vector space), we can de�ne a map

Φ : X → Pn

x 7→ [s0(x) : · · · : sn(x)].

Proposition 3.3.1. The map Φ is well-de�ned and induces an isomorphism Φ∗OPn(1) ∼= L .

Proof. Pick a point x ∈ X and consider Φ de�ned in a suitable open neighborhood U of x, on which we
may identify L with OX . Then sections from H0(U,L ) are holomorphic functions. Since L is glob-
ally geenrated, there is sj(x) 6= 0 for certain j ∈ {0, . . . , n}. Hence the point (s0(x), . . . , sn(x)) ∈ Pn

is well-de�ned and indepedent of the choice of the chart and L |U ∼= OX |U . Obviously Φ is holomor-
phic on U . For each i ∈ {0, . . . , n}, de�ne Xi := Φ−1(Ui) = {x ∈ X : si,x 6= mxLx} and they form
an open cover (Xi)i=0,...,n of X due to L is globally generated. The homomorphism OPn(1)(Ui) →
(Φ∗L )(Ui) = L (Xi) induced from zi 7→ si is an isomorphism. Consequently, we further obtain

an isomorphism of sheaves of OPn-module OPn(1)
∼=−→ Φ∗L . Using adjointness of direct image (as

a covariant functor with inverse image as adjoint) HomOPn (Φ∗OPn(1),L ) ∼= HomOPn (OPn(1),Φ∗L ),

there is an isomorphism Φ∗OPn(1)
∼=−→ L . �

Remark 3.3.2. The above de�nition of the map Φ depends on the choice of basis of H0(X,L ).
Grothendieck has proposed an intrinsic de�nition by the dual construction: Φ : X → P(H0(X,L )∗),
x 7→ λx with λx : H0(X,L ) → Lx/mxLx

∼= C, s 7→ [sx]. The value of s(x) ∈ C depends on the
choice of the isomorphism between L and O in a neighborhood of x. Nevertheless the class of λx is
independent of the choice. [Weh]

Next we will show the geometric criterion when the map induced by a globally generated invertible
sheaf would be a closed embedding.

Theorem 3.3.3. Consider a globally generated invertible sheaf L on a compact Riemann surface
X. Then the induced map Φ : X → Pn is a closed embedding i�. L satis�es the following properties

i) separating points: For any two distinct points x, x′ ∈ X there exists a section s ∈ H0(X,L ) with
s(x) 6= 0 but s(x′) = 0 or the other way around.

ii) separating tangent vectors: For all x ∈ X the map

d′x : {s ∈ H0(X,L ) : sx ∈ mX,xLx} → mX,xLx/m
2
X,xLx

s 7→ [sx]

is surjective.

Remark 3.3.4. First, note the OX,x-modules isomorphisms

mX,xLx/m
2
X,xLx

∼= (mX,x/m
2
X,x)⊗OX,x

Lx
∼= Ω1

X,x ⊗OX,x
Lx.

The map
d′x : {s ∈ H0(X,L ) : sx ∈ mxLx} → Ω1

X,x ⊗OX,x
Lx

is induced by the total di�erential dx = d′x + d′′x acting on the holomorphic sections: a holomorphic
sections s ∈ H0(X,L ) with sx ∈ mxLx can be written locally (in a suitable neighborhood U of x)
as s = f · s′ with holomorphic function f ∈ OX(U) satisfying fx ∈ mX,x and a holomorphic section
s′ ∈ L (U). Then d′xs = d′xf ⊗ s′ ∈ Ω1

X,x⊗OX,x
Lx. This map is well-de�ned: if s can also be written

locally as g · s′′ with ord(g;x) ≥ ord(f ;x), then g = h · f with h ∈ OX(U) and hx ∈ m2
X,x. Hence

d′x(g ⊗ s′′) = d′x(h · f)⊗ s2 = (h · d′xf)⊗ s′′ = d′xf ⊗ h · s′′ = d′xf ⊗ s′.
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Set p = Φ(x) ∈ Pn and consider on Pn a similar map

d′p : {σ ∈ H0(Pn,OPn(1)) : σx ∈ mPn,pOPn(1)p} → Ω1
Pn,p ⊗OPn,p

OPn(1)p,

which is surjective. The pullback of sections

Φ∗ : H0(Pn,OPn(1))→ H0(X,Φ∗OPn(1)) = H0(X,L )

σ 7→ s = σ ◦ Φ

is surjective by de�nition. Consider OPn,p and OX,x as two base rings, the pullback of holomorphic
functions induces surjective ring morphism

OPn,p → OX,x

f 7→ f ◦ Φ

making OX,x as a OPn,p-module. Now Ω1
Pn,p and OPn(1)p can be viewed as OPn,p-modules, while Ω1

X,x

and Lx = OPn(1)p ⊗OPn,p
OX,x can be viewed as OX,x-modules. The pullback of di�erential forms

gives a OX,x-morphism
Ω1

Pn,p ⊗OPn,p
OX,x → Ω1

X,x

and the composition
Ω1

Pn,p → Ω1
Pn,p ⊗OPn,p

OX,x → Ω1
X,x

is a OPn,p-morphism. Tensoring by OPn,p-module OPn(1)p gives a OPn,p-morphism

Φ∗Ω1 : Ω1
Pn,p⊗OPn,p

OPn(1)p → Ω1
X,x⊗OPn,p

OPn(1)p = Ω1
X,x⊗OX,x

(OX,x⊗OPn,p
OPn(1)p) = Ω1

X,x⊗OX,x
Lx

These maps all together give a commutative diagram:

{σ ∈ H0(Pn,OPn(1)) : σ(p) = 0}

Φ∗

��

d′p // Ω1
Pn,p ⊗OPn,p

OPn(1)p

Φ∗
Ω1

��
{s ∈ H0(X,L ) : s(x) = 0} d′x // Ω1

X,x ⊗OX,x
Lx

Proof. We �rst assume Φ : X ↪→ Pn is closed embedding. For a point x ∈ X, Φ(x) = p ∈ Pn, the
hyperplane H ⊂ Cn+1 containing the �ber (complex line) Lp := π−1(p) ⊂ Cn+1 are 1:1 corresponding
to the non-zero sections σH ∈ H0(Pn,O(1)) with σH(p) = 0: The hyperplane is represented as
H = ker(λ) where λ : Cn+1 → C, (z0, . . . , zn) 7→

∑n
j=0 λjzj is a non-zero map. Then the section

given by σH([z0 : · · · : zn]) :=
∑n

j=0 λjzj satis�es σH(p) = 0. Now consider two distinct points

x = π(u0) = [z
(0)
0 : · · · : z

(0)
n ] 6= [z

(n)
0 : · · · : z

(n)
n ] = π(un) = x′ in X. The two vectors u0 =

(z
(0)
0 , . . . , z

(0)
n ), un = (z

(n)
0 , . . . , z

(n)
n ) ∈ Cn+1 are C-linear independent hence they extend to a basis

{ui}i=0,...,n of Cn+1. Construct the hyperplane H := spanC{ui : i = 0, . . . , n− 1} ⊂ Cn+1 containing
u0 but not un. De�ne s := σH ◦ Φ ∈ H0(X,L ) and this satis�es s(x) = 0 and s(x′) 6= 0. Therefore
L separates points.

Consider a point x ∈ X and p = Φ(x) ∈ Pn. By assumption Φ is an immersion, i.e. Ω1
X,x → Ω1

Pn,p

is surjective, hence the map Φ∗Ω1 : Ω1
Pn,p ⊗OPn,p

OPn(1)p → Ω1
X,x ⊗OX,x

Lx is subjective. Further by
surjectivity of d′p, Φ∗Ω1 ◦ d′p is thus subjective as well. The commutativity of the diagram in Remark
3.3.4 implies d′x : {s ∈ H0(X,L ) : s(x) = 0} → Ω1

X,x ⊗OX,x
Lx is surjective. Hence L separates

tengent vectors at x ∈ X.
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Conversely assume L separate points and tangent vectors. Separating points implies Φ is injective.
The map is continous and X is compact, hence the image Φ(X) ⊂ Pn is compact and thus closed.
To show Φ = [s0 : · · · : sn] : X → Pn is an immersion, consider again the commutative diagram
in Remark 3.3.4. By assumption d′x is surjective, this implies d′x ◦ Φ∗ is surjective and thus Φ∗Ω1 :
Ω1

Pn,p ⊗OPn,p
OPn(1)p → Ω1

X,x ⊗OX,x
Lx is surjective. As a consequence Ω1

X,x → ΩPn,p is surjective for
all x ∈ X, which shows that Φ is indeed an immersion. �

3.4 Ample line bundles

According to the relation between holomorphic line bundles and invertible sheaves over Riemann
surface as well as the projective map discussed last section, we can make de�nition for the notation
of ample and very ample.

De�nition 3.4.1.: Consider a globally generated invertible sheaf L on a compact Riemann surface
X. The sheaf is very ample if the induced map Φ : X → Pn is a closed embedding. The sheaf is
ample if there is an N ∈ N (without 0) s.t. for all n > N the power L ⊗n is very ample.

One can compare with the corresponding concepts de�ned for divisors. [Hart]

Now denote the sheaf of mereomorphic sections of L which are multiples of the divisor −D as
LD := L ⊗O OD.

Proposition 3.4.2. Consider an invertible sheaf L on a compact Riemann surface X. The following
statements are equivalent:

i) The sheaf L is very ample.

ii) For point divisors P, P ′ ∈ Div(X) of two arbitrary, not necessarily distint points x, x′ ∈ X,
dimH0(X,L−P−P ′) = dimH0(X,L )− 2.

Proof. ii)⇒ i) For any P, P ′ ∈ Div(X), the dimension formula implies H0(X,L−P−P ′) ( H0(X,L )
is a codim. 2 proper inclusion. This factorizes as H0(X,L−P−P ′) ( H0(X,L−P ) ( H0(X,L ) and
each proper inclusion is of codim. 1. Using this fact we observe the following:

• dimH0(X,L−P ) = dimH0(X,L )− 1 implies

codim ker
(
H0(X,L )→Lx/mX,xLx

∼=C
s 7→[sx]

)
= 1.

Hence x is not a base point of L , i.e. L is globally generated, and therefore Φ : X → Pn is
well-de�ned.

• H0(X,L−P−P ′) ( H0(X,L−P ) implies that for any pair of distinct points x, x′ ∈ X there exists a
section s ∈ H0(X,L−P )\H0(X,L−P−P ′), i.e. s(x) = 0 but s(x′) 6= 0. Hence L separates points.

• For any P ∈ Div(X), inclusion H0(X,L−2P ) ( H0(X,L−P ) is codim. 1. Then there ex-
ists a section s ∈ H0(X,L−P )\H0(X,L−2P ). This implies the composition of canonical maps
H0(X,L−P )→ mX,xLx → mX,xLx/m

2
X,xLx

∼= spanC{[sx]} is surjective since dimC(mX,x/m
2
X,x) = 1.

Therefore {s ∈ H0(X,L ) : sx ∈ mxLx}� mX,xLx/m
2
X,xLx, i.e. L separates tangent vectors.

These observations implies via Theorem 3.3.3 that Φ is a closed embedding and hence i) holds.

i)⇒ ii) Since by assumption L is very ample, then by theorem 3.3.3 L separates points and tangent
vectors. Reversing the arguments above, separating points implies for all distinct P, P ′ ∈ Div(X),
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dimH0(X,L−P−P ′) = dimH0(X,L )− 2. Separating tangent vectors implies for every P ∈ Div(X),
dimH0(X,L−2P ) = dimH0(X,L )− 2. �

Finally, we come to show the most important results in this note � the embedding theorem for
compact Riemann surfaces.

Theorem 3.4.3. Any compact Riemann surface X has a closed embedding into Pn for suitable
n ≥ 1.

Proof. We �rst show the existence of such an embedding: The Riemann-Roch theorem for invert-
ible sheaf over compact Riemann surface X with genus g states χ(L ) = 1 − g + 〈c1(L ), [X]〉 and
χ(L−P−P ′) = 1−g+ 〈c1(L ), [X]〉−2 for any P, P ′ ∈ Div(X), which implies χ(L−P−P ′) = χ(L )−2.
Once we can �nd an invertible sheaf so that dimH1(X,L ) = dimH1(X,L−P−P ′) = 0, then by
the criteria of very ampleness of L there exists such an embedding. We reformulate this di-
mension vanishing condition by Serre duality of invertible sheaves as dimH0(X,L ∗ ⊗OX

⊗ωX) =
dimH0(X,L ∗

−P−P ′ ⊗OX
ωX) = 0. We know from before a necessary condition for the vanishing of

these dimensions is

〈c1(L ∗ ⊗OX
⊗ωX), [X]〉 = −〈c1(L ), [X]〉+ 〈c1(ωX), [X]〉 < 0

〈c1(L ∗
−P−P ′ ⊗OX

ωX), [X]〉 = −〈c1(L ), [X]〉+ 〈c1(ωX), [X]〉+ 2 < 0

and 〈c1(ωX), [X]〉 = 2(g− 1). Hence the claim reduces to the existence of an invertible sheaf L with
〈c1(L ), [X]〉 > 2g. For any D ∈ Div(X), 〈c1(OD), [X]〉 = degD. Therefore any su�ciently high
multiple of a point divisor on X provides a suitable invertible sheaf L .

Next we �nd such sheaf by explicit construction in various cases.

g = 0 : We choose a point divisor P ∈ Div(X) and set L = OP . Then dimH0(X,L ) = 1−0+1 = 2,
namely H0(X,L ) spanned by two global holomorphic sections. Hence Φ : X → P1 provides a closed
embedding and by the topology property it is actually an isomorphism.

g = 1 : We choose a point divisor P ∈ Div(X) and set L = O3P . Then dimH0(X,L ) = 1− 1 + 3,
namely H0(X,L ) is spanned by three global holomorphic sections. Hence Φ : X → P2 provides a
closed embedding.

g ≥ 2 : We set L = ω⊗3
X , namely the sheaf of sections of the tri-canonical bundle.. Then

〈c1(L ), [X]〉 = 3 · 2(g− 1) > 2g. It follows dimH0(X,L ) = 1− g + 6(g− 1) = 5(g− 1). Therefore
Φ : X → P5(g−1)−1 provides a closed embedding. �

Remark 3.4.4

• The theorem shows that for genus g ≥ 2 the tri-canonical bundle provides a projective embedding
of X. For g = 1 the canonical bundle is trivial, i.e. ωX

∼= OX , hence for each power of the canonical
bundle the map Φ maps X to a point. For g = 0 no positive power of the canonical bundle has a
holomorphic section.

• More generally, one can prove thatthere always exist closed embeddings into P3, see [Hart] Chapter
IV, Cor. 3.6.

• The proof of the theorem shows that the only compact Riemann surface with genus zero is the
projective space P1. An analogous statement does not hold for higher genus: the moduli space of
compact Riemann surfaces has the dimension

dimCMg =


0 g = 0
1 g = 1

3g− 3 g ≥ 2
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